Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice.

نویسندگان

  • Howard W Francis
  • Alejandro Rivas
  • Mohamed Lehar
  • David K Ryugo
چکیده

Afferent synapses on inner hair cells (IHC) transfer auditory information to the central nervous system (CNS). Despite the importance of these synapses for normal hearing, their response to cochlear disease and dysfunction is not well understood. The C57BL/6J mouse is a model for presbycusis and noise-induced hearing loss because of its age-related hearing loss and susceptibility to acoustic over-exposure. In this context, we sought to establish normal synaptic structure in order to better evaluate synaptic changes due to presbycusis and noise exposure. Ultrastructural analysis of IHCs and afferent terminals was performed in a normal hearing 3-month-old C57BL/6J mouse at cochlear sites corresponding to 8, 16 and 32 kHz using semi-serial sections. A stereologic survey of random sections was conducted of IHCs in 11 additional mice. Two morphologically distinct groups of afferent terminals were identified at all 3 frequency locations in 11 out of 12 animals. "Simple" endings demonstrated classic features of bouton terminals, whereas "folded" endings were larger in size and exhibited a novel morphologic feature that consisted of a fully internalized double membrane that partially divided the terminal into two compartments. In many cases, the double membrane was continuous with the outer terminal membrane as if produced by an invagination. We still must determine the generality of these observations with respect to other mouse strains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice.

Hearing deficits have often been associated with loss of or damage to receptor hair cells and/or degeneration of spiral ganglion cells. There are, however, some physiological abnormalities that are not reliably attributed to loss of these cells. The afferent synapse between radial fibers of spiral ganglion neurons and inner hair cells (IHCs) emerges as another site that could be involved in tra...

متن کامل

Over-expression of myosin7A in cochlear hair cells of circling mice

Circling mouse (C57BL/6J-cir/cir) deleted the transmembrane inner ear (Tmie) gene is an animal model for human non-syndromic recessive deafness, DFNB6. In circling mouse, hair cells in the cochlea have degenerated and hair bundles have become irregularity as time goes on. Tmie protein carries out a function of the mechanoelectrical transduction channel in cochlear hair cells. Myosin7a (MYO7A) p...

متن کامل

Re-Emergent Inhibition of Cochlear Inner Hair Cells in a Mouse Model of Hearing Loss.

UNLABELLED Hearing loss among the elderly correlates with diminished social, mental, and physical health. Age-related cochlear cell death does occur, but growing anatomical evidence suggests that synaptic rearrangements on sensory hair cells also contribute to auditory functional decline. Here we present voltage-clamp recordings from inner hair cells of the C57BL/6J mouse model of age-related h...

متن کامل

Changes of ribbon synapses number of cochlear hair cells in C57BL/6J mice with age(Δ).

To investigate the changes of ribbon synapses (RS) number in cochlear hair cells in C57BL/6J mice with age. Basilar membranes within the cochlea of C57BL/6J mice aged 2, 6, 10 and 12 months were harvested (5 mice in each age group). The presynaptic and postsynaptic membranes were subject to double immunohistochemical staining and observed with a laser confocal microscope. The number of RS in ea...

متن کامل

Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses

The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1016 2  شماره 

صفحات  -

تاریخ انتشار 2004